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BETWEEN A RIGID HEAT-CONDUCTING WEDGE
AND AN ELASTIC LAYER UNDER NONSTATIONARY
FRICTION HEAT RELEASE

P. P. Krasnyuk UDC 539.3

We consider a solution to the new plane problem of contact interaction with an elastic layer of a rigid, heat-
conducting cross-sectional die in the form of a bounded or unbounded wedge. Using the apparatus of integral
transformations, we have obtained an exact solution of the heat-conduction equations for the die and the
layer, which permits reducing the problem stated to a system of integral equations whose structure is deter-
mined by the kind of thermophysical conditions on the interaction surface. This enables us to make the mathe-
matical statement of the problem more realistic in terms of the distribution of thermoelastic stresses and
adequately estimate the influence of thermal fields on the value of the contact pressure and the character of
its distribution.

Introduction. The classical, at present, formulation of thermoelastic contact problems with friction heat release
presupposes the interaction of a bounded, rigid, heat-insulated die with the surface of an elastic half-space or layer
[1–3]. But if a heat-conducting die is considered, then this body is modeled by a half-plane or a half-space, which
makes it possible to use, in calculating the temperature fields, differential heat-conduction equations for semibounded
bodies and, accordingly, the mathematical apparatus of integral transformations or construction of Green functions [4,
5]. Evidently, these model simplifications introduce significant corrections into the obtained distributions of contact
stresses and temperature fields. Moreover, problems on the influence of friction heat release on the mechanism of in-
teraction with the base of a die in the form of a wedge are disregarded by researchers, whereas contact problems of
the elasticity theory on pressing a rigid wedge into a half-space were considered in monographs [6, 7]. At the same
time, this class of problems should not be ignored, since the body in the form of a wedge models the action of a cut-
ting tool and the investigation of the thermomechanical processes that take place in machine working of a material is
necessary for developing effective technologies in machine building. Therefore, complication of models with the aim
of making them more realistic in terms of real tribosystems is the goal of mathematical problems of tribology.

The present paper considers a new quasi-static contact problem for a tribosystem consisting of an elastic layer
of finite length h fixed on a base on whose surface a heat-conducting die in the form of a wedge moves. In so doing,
the heat release due to the action of forces obeying the Amonton (Coulomb) law is taken into account. The formula-
tion of the problem takes into account the die geometry and, as a consequence, with the help of the apparatus of in-
tegral transformations, the exact solution of the nonstationary heat-conduction equation for the wedge-shaped region
and the exact solution of the nonstationary heat-conduction equations and quasi-static thermal elasticity for the layer
are constructed. The problem has been reduced to a system of integral equations with time-varying integration bounda-
ries, whose structure depends on the kind of thermophysical conditions on the interaction surface. The numerical solu-
tion of integral equations is constructed on the basis of the known algorithm [8, 9], which makes it possible to analyze
the effect of the change in the contact pressure and in the value of the interaction area with changing-with-time press-
ing force and velocity of motion.

Mathematical Formulation of the Problem. Let a rigid, wedge-shaped, in the cross-section, die with an apex
angle ϕ ≤ α0 unbounded (0 ≤ ρ < ∞) or bounded by a circular arc ρ = b be pressed by force P(τ), referred to a unit
length, to an elastic layer of thickness h rigidly fixed on the base (Fig. 1). It is assumed that the die in the direction
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of the z-axis moves on the layer surface at a low velocity v(τ). In so doing, the changes with time in the pressing
force and velocity of motion are such that the possible dynamic effects can be neglected and the problem is considered
in the quasistatic formulation. As a consequence of the action of forces τyz arising on the contact surfaces and obeying
the Amonton (Coulomb) law τyz = fσy, in the contact plane nonstationary heat release occurs. The contact region be-
tween the die and the layer is described by the inequalities x ≤ a(τ); z < ∞, where the half-width of the interac-
tion area a(τ) can vary with time, which is due to the nonstationary character of the heat release. Since the die is
heat-conducting, the heat generated on the contact is distributed between the bodies and causes their heating. That is
why the contact surface of the layer bulges and, as a consequence, the half-width of the interaction area a(τ) changes.

Between the lower surface of the layer and the base, whose temperature is equal to zero, as well as between
the upper plane outside the contact area and the environment with a zero temperature heat exchange by the Newton
law is supposed. Outside the contact area 0 ≤ ρ ≤ a(τ) ⁄ sin (α0), the surface of the wedge is assumed to be heat-insu-
lated, which is required by the conditions of using integral transformations — by the possibility of separating variables
in the initial-boundary-value problem for the heat-conduction equation. Moreover, the influence of tangent stresses τyx
in the contact area is neglected.

Under the above assumptions realizing a plane deformation in the layer the problem is reduced to the con-
struction of solutions of a system including the differential heat conduction equations for the layer in the Cartesian co-
ordinate system

∂x
2
T1 + ∂y

2
T1 = k1

−1∂τT1
(1)

and for the wedge-shaped, in plan, die in the polar coordinates

∂ρ
2
T2 + ρ−1∂ρT2 + ρ−2∂ϕ

2
T2 = k2

−1∂τT2 , (2)

as well as for the thermoelasticity (only for the layer)

(1 − 2ν) ∂x
2
ux + ∂y

2
ux

 + ∂x (∂xux + ∂yuy) = 2α (1 + ν) ∂xT1 ,

(3)

(1 − 2ν) ∂x
2
uy + ∂y

2
uy

 + ∂y (∂xux + ∂yuy) = 2α (1 + ν) ∂yT1

under the initial

T1 (x, y, 0) = 0 ,   T2 (ρ, ϕ, 0) = 0 , (4)

boundary and contact conditions:

y = − h :   ∂yT1 = γ1T1 ,   ux = 0 ,   uy = 0 ; (5)

Fig. 1. Scheme of the problem of contact interaction between a rigid, heat-con-
ducting cross-sectional wedge-shaped die and an elastic layer.
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y = 0 :   x ≤ a (τ) :   uy = − δ (τ) + ctan (α0) x ,   τyx = 0 ; (6)

λ1∂yT1 − λ2∂yT2 = fv (τ) p (x, τ) ,   λ1∂yT1 + λ2∂yT2 + h0 (T1 − T2) = 0 ; (7)

x > a (τ) :   ∂yT1 = − γ0T1 ,   σy = 0 ;   τyx = 0 ; (8)

ρ = b ,   ϕ ≤ α0 :   ∂ρT2 = − β0T2 ,   a (τ) ⁄ sin (α0) < ρ ≤ b ,   ϕ = % α0 :   ρ−1∂ϕT2 = 0 ; (9)

ρ → ∞ ,   ϕ ≤ α0 :   T2 → 0 ;   a (τ) ⁄ sin (α0) < ρ < ∞ ;   ϕ = % α0 :   ρ−1∂ϕT2 = 0 . (10)

The stresses in the layer are defined by the formulas

σx = 
E (1 − ν)

(1 + ν) (1 − 2ν)
 



∂xux + 

ν
1 − ν

 ∂yuy − α 
1 + ν
1 − ν

 T1



 ,

(11)

σy = 
E (1 − ν)

(1 + ν) (1 − 2ν)
 



∂yuy + 

ν
1 − ν

 ∂xux − α 
1 + ν
1 − ν

 T1



 ,   τyx = 

E
2 (1 + ν)

 (∂yux + ∂xuy) .

The system of differential equations and boundary conditions is closed by the expressions of boundedness of the con-
tact pressure p(%a(τ), τ) = 0 valid for an unbounded or a high wedge (b > a(τ) ⁄ sin (α0)), as well as by the equilib-
rium relation of the die as a rigid body

  ∫ 
−a(τ)

a(τ)

 p (x, τ) dx = P (τ) . (12)

The value of the index j = 1 corresponds to the layer and j = 2 — to the rigid die.
The above formulation of the thermoelastic problem (1)–(12) requires some explanation.
1. In giving the contact conditions for the layer, the boundary conditions are carried onto the undeformed sur-

face, as is commonly done in problems of the linear theory of elasticity. Moreover, it should be noted that for the in-
plan wedge-shaped die the half-width of the contact area is primordially a variable quantity, the change in which is
equally influenced by both mechanical (e.g., an increase in the pressing force) and thermophysical factors (bulging of
the layer surface under friction heating).

2. The boundary conditions (9) are used for the interaction of a bounded wedge with the layer, where the first
relation in (9) describes the heat exchange from the surface ρ = b of the wedge by the Newton law with a zero-tem-
perature medium, and the second relation describes the condition of heat insulation of the wedge surface outside the
interaction area. The first relation in the boundary condition (10) describes the temperature decay in the unbounded
wedge at infinity, and the second one describes the heat insulation of the unbounded wedge surface outside the contact
area.

3. It is more convenient to calculate the temperature field in the wedge in the polar system of coordinates.
Therefore, to match the temperature function of the die under the thermophysical conditions (7) — the condition of

heat release and nonideal thermal contact — the relations ρ = √x2 + y2  and ϕ = arctan (x ⁄ y) will be used.

Construction of the Solution. To obtain the solution, let us divide the initial boundary problem of thermoe-
lasticity given by relations (1)–(12) into two independent problems — construction of the solution to the nonstationary
heat conduction problem and its corresponding quasi-static heat elasticity problem for the layer and differentiation of
the nonstationary heat conduction equation at mixed boundary conditions for the in-plan wedge-shaped die. To this
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end, let us introduce into consideration two unknown functions which are a linear combination of the temperature and
the heat flow on the contact surface:

f1 (x, τ) = ∂yT1 (x, 0, τ) + γ0T1 (x, 0, τ) S (a (τ) − x) ,   f2 (x, τ) = − ∂yT2 (x, 0, τ) S (a (τ) − x) ,      (13)

where S(x) is the Heaviside function [10]. Then the layer temperature is determined from the solution of the differen-
tial equation (1) at the initial condition from (4) and the boundary condition

∂yT1 (x, − h, τ) = γ1T1 (x, − h, τ) ,   ∂yT1 (x, 0, τ) = f1 (x, τ) S (a (τ) − x) − γ0T1 (x, 0, τ) ,

where the full scheme of constructing the integral representation of the layer temperature in terms of the sought func-
tion f1(x, τ) and the corresponding calculations are given in [8, 9].

We seek a solution of the system of differential thermoelasticity equations (3) in the form of a sum of the
general solution of the homogeneous system and a particular solution of the inhomogeneous system where the ther-
moelastic potential of displacements [11] F(x, y, τ), which is a particular solution of the differential equation
(∂x

2 + ∂y
2)F(x, y, τ) = α(1 + ν)(1 − ν)−1T1(x, y, τ), is used. Applying to Eq. (3) and the boundary conditions

ux (x, − h, τ) = 0 ,   uy (x, − h, τ) = 0 ,   σy (x, 0, τ) = − p (x, τ) S (a (τ) − x) ,   τyx (x, 0, τ) = 0 ,

the integral Fourier transform on the x coordinate, solving in transforms the obtained systems of ordinary differential
equations, and transforming the expressions for the Fourier transforms of thermoelastic displacements and stresses, we
will have a solution of the quasistatic thermoelastic problem — integral representations for the sought components of
the temperature and stressed–strained states of the layer for the sought function f1(x, τ) and contact pressure p(x, τ).

Here we will give only the formulas for the contact temperature and normal displacements of the surface y = 0
of the elastic layer in dimensionless form. To this end, we assign the linear dimensions of the body to the layer thickness
h, the stresses to the value of P0h−1, and the temperature to the combination of parameters αEh(2P0(1 − ν))−1, and, as a
result, we obtain

T1 (x, y, Fo) = 
1
π

 ∂Fo ∫ 
0

Fo

    ∫ 
−a(η)

a(η)

 f1 (t, η) Φ1 (t − x, y, Fo − η) dt dη ,

(14)

uy (x, 0, Fo) = − 
2P0 (1 − ν2)

Eh
 
1

π
 






  ∫ 
−a(τ)

a(τ)

 p (t, Fo) ∆ (t − x) dt − ∂Fo ∫ 
0

Fo

   ∫ 
−a(η)

a(η)

 f1 (t, η) H (t − x, Fo − η) dt dη






 ,

when

Φ1 (x, y, Fo) = ∫ 
0

∞
ξ cosh (ξ (1 + y)) + Bi1,1 sinh (ξ (1 + y))

ξ (ξ sinh (ξ) + Bi1,1 cosh (ξ)) + Bi0,1 (ξ cosh (ξ) + Bi1,1 sinh (ξ))
 cos (ξx) dξ 

− 
π

2
  ∑ 

m=1

∞

 
µm cos (µmy) − Bi0,1 sin 2(µmy)

(µm
2

 + Bi0,1
2 ) (1 + Bi1,1 (µm

2
 + Bi1,1

2 )−1) + Bi0,1

  ∑ 

k=1

2

 exp ((− 1)k µmx) erfc 



µm √Fo + (− 1)k 

x

2√Fo




 ,

∆ (x) = ∫ 
0

∞

ξ−1
 

(3 − 4ν) cosh (ξ) sinh (ξ) − ξ

ξ2
 − (1 − 2ν)2 sinh

2
 (ξ) + 4 (1 − ν)2 cosh

2
 (ξ)

 cos (ξx) dξ ,
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H (x, Fo) = ∫ 
0

∞ 





4 

2 (1 − ν) (ξ sinh (ξ) − Bi1,1 cosh (ξ)) − ξ (sinh (ξ) + ξ cosh (ξ) + Bi1,1 sinh (ξ))

ξ2
 − (1 − 2ν)2 sinh

2
 (ξ) + 4 (1 − ν)2 cosh

2(ξ)
 

× ∑ 

m=1

∞

 
µm

(µm
2

 + ξ2)2 
(µm cos (µm) + Bi0,1 sin (µm)) exp (− (ξ2

 + µm
2 ) Fo)

(µm
2

 + Bi0,1
2 ) (1 + Bi1,1 (µm

2
 + Bi1,1

2 )−1) + Bi0,1

 

+ 
1

ξ
 

(ξ2
 + (3 − 4ν) sinh

2
 (ξ)) (ξ sinh (ξ) + Bi1,1 cosh (ξ)) + 2 (1 − ν) ξ (ξ cosh (ξ) − Bi1,1 sinh (ξ) + sinh (ξ))

(ξ (ξ sinh (ξ) + Bi1,1 cosh (ξ)) + Bi0,1 (ξ cosh (ξ) + Bi1,1 sinh (ξ))) (ξ2
 − (1 − 2ν)2 sinh

2
 (ξ) + 4 (1 − ν)2 cosh

2
 (ξ))

 

+ 4 
ξ2

 − 2 (1 − ν) Bi0,1 − (3 − 4ν) sinh (ξ) (ξ (cosh (ξ) + Bi0,1 sinh (ξ))
ξ2

 − (1 − 2ν)2 sinh
2
 (ξ) + 4 (1 − ν)2 cosh

2(ξ)
 

× ∑ 

m=1

∞

 
µm

2

(µm
2

 + ξ2)2 
exp (− (ξ2

 + µm
2 ) Fo)

(µm
2

 + Bi0,1
2 ) (1 + Bi1,1 (µm

2
 + Bi1,1

2 )−1) + Bi0,1







 cos (ξx) dξ ,

Fo = τk1h−2, Bi0,1 = γ0h and Bi1,1 = γ1h are Fourier and Biot criteria [12], erfc (x) is the error function [10], µm
stands for positive roots of the transcendental equation of the Sturm–Liouville problem:

µm (µm sin (µm) − Bi1,1 cos (µm)) − Bi0,1 (µm cos (µm) + Bi1,1 sin (µm)) = 0 .

In the above formulas for the temperature and normal displacements, no new variables were introduced for the x, y
coordinates assigned to the layer thickness h and the half-widths of the contact area a(τ), as well as for the contact
pressure function p(x, Fo) assigned to the combination of parameters P0h−1.

The nonstationary temperature field for the in-plan wedge-shaped region is obtained from the solution of the
differential heat conduction equation in the polar coordinate system (2) at the initial condition from (4) and the bound-
ary conditions

ρ−1∂ϕT2 (ρ, α0, τ) = f2 (ρ sin (α0), τ) S (a (τ) ⁄ sin (α0) − ρ) ⁄ sin (α0) ,

ρ−1∂ϕT2 (ρ, − α0, τ) = − f2 (ρ sin (α0), τ) S (a (τ) ⁄ sin (α0) − ρ) ⁄ sin (α0) ,
(15)

ρ = b ,   ϕ ≤ α0 :   ∂ρT2 = − β0T2   (for the bounded wedge);

ρ → ∞ ,   ϕ ≤ α0 :   T2 → 0   (for the unbounded wedge).

The first two relations in (15) are the boundary conditions on the side surface of the wedge, where it is taken into
account that from the physical considerations of the formulation of the problem the function f2(x, τ) is pair on the x
coordinate. The other two relations in (15) define, respectively, the condition of heat transfer from the surface ρ = b
of the bounded wedge and the condition of temperature decay at infinity for the unbounded wedge-shaped region.

The construction of the solution of the heat conduction equation (2), (4), and (15) consists of using two inte-
gral transforms on the angular and radial coordinates. For both the finite and the infinite wedge, we first use the finite
integral Fourier transform on the angular coordinate ϕ with a kernel

K1 (ϕ, n) = 











1 ⁄ √2α0  ,
cos (πnϕ ⁄ α0) ⁄ √α0  ,

     
n = 0 ;

n ≥ 1 .
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Then on the radial coordinate ρ for the bounded wedge we use the finite integral Hankel transform [13] with a kernel

K2 (ρ, µm,n) = 
√2
b

 
1

√1 + 
β0

2

µm,n
2  − 

π2
n

2

α0
2
b

2µm,n
2

 

Jπn
α0

 (µm,nρ)

Jπn
α0

 (µm,nb)
 ,

and for the unbounded wedge — the integral Hankel transform [13], where Jn(x) is a Bessel function of the first kind
of order n [10]; µm,n stands for positive roots of the transcendental equation of the Sturm–Liouville problem

(πn ⁄ α0 + bβ0) Jπn

α0

 (µm,nb) − µm,nbJπn

α0

+1
 (µm,nb) = 0 ,

where at n = 0 the first eigenvalue of µ ≠ 0, and at n ≥ 1 µ = 0 is a root. The application of the integral transforms
permits obtaining, for determining the Fourier–Hankel transform of the wedge temperature, a Cauchy problem, whose
solution and inversion of the double integral Fourier–Hankel transform enable us to write the expression for the tem-
perature of the wedge-shaped region:

T2 (ρ, ϕ, τ) = ∂τ ∫ 
0

τ

         ∫ 
0

a(η) ⁄ sin(α0)

     f2 (t sin (α0), η) Φ2 (ρ, t, ϕ, τ − η) dt dη , (16)

where for the bounded wedge the kernel of the integral representation is of the form

Φ2 (ρ, t, ϕ, τ) = 
1

b
2α0 sin (α0)

  ∑ 

m=1

∞

 
J0 (µm,0ρ) J0 (µm,0t)

(β0
2
 + µm,0

2 ) J0
2
 (µm,0b)

 (1 − exp (− µm,0
2

k2τ)) + 
2

b
2α0 sin (α0)

 

× ∑ 

n=1

∞

(− 1)n cos (πnϕ ⁄ α0) ∑ 

m=0

∞

 

Jπn

α0

 (µm,nρ) Jπn

α0

 (µm,nt)

((β0
2
 + µm,n

2 ) − b
−2

 (πn ⁄ α0)
2) Jπn

α0

2
 (µm,nb)

 (1 − exp (− µm,n
2

k2τ)) ,

and in the case of the unbounded wedge-shaped region

Φ2 (ρ, t, ϕ, τ) = 
1

α0 sin (α0)
 ∫ 
0

∞

ζ−1
J0 (ζρ) J0 (ζt) (1 − exp (− ζ2

k2τ)) dζ + 
2

α0 sin (α0)
 

× ∑ 

n=1

∞

(− 1)n cos (πnϕ ⁄ α0) ∫ 
0

∞

ζ−1
Jπn

α0

 (ζρ) Jπn

α0

 (ζt) (1 − exp (− ζ2
k2τ)) dζ .

The final solution of the problem is constructed in the Cartesian system of coordinates x0y. Therefore, using the rela-

tions ρ = √x2 + y2  and ϕ = arctan (x ⁄ y), we give the corresponding expressions for the wedge temperature, as was

done for the elastic layer, in this coordinate system in dimensionless form

T2 (x, y, Fo) = ∂Fo ∫ 
0

Fo

    ∫ 
−a(η)

a(η)

 f2 (t, η) Φ2 (x, t, y, Fo − η) dt dη , (17)
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where for the bounded wedge the kernel of the integral representation has the form

Φ2 (x, t, y, Fo) = 
1

b
2α0 sin

2
 (α0)

  ∑ 

m=1

∞

 
J0 (µm,0 √x2 + y2) J0 (µm,0 t ⁄ sin (α0))

(Bi0,2
2

 + µm,0
2 ) J0

2
 (µm,0b)

 

× (1 − exp (− µm,0
2

kFo)) + 
2

b
2α0 sin

2
 (α0)

  ∑ 

n=1

∞

 (− 1)n cos (πn arctan  (x ⁄ y) ⁄ α0) 

× ∑ 

m=0

∞

 

Jπn

α0

 (µm,n √x2 + y2) Jπn

α0

 (µm,n t ⁄ sin (α0))

((Bi0,2
2

 + µm,n
2 ) − b

−2
 (πn ⁄ α0)

2) Jπn

α0

2
 (µm,nb)

 (1 − exp (− µm,n
2

kFo)) ,

and for the unbounded wedge-shaped region

Φ2 (x, t, y, Fo) = 
1

α0 sin
2
 (α0)

 ∫ 
0

∞

ζ−1
J0 (ζ √x2 + y2) J0 (ζ t ⁄ sin (α0)) (1 − exp (− ζ2

kFo)) dζ 

+ 
2

α0 sin
2
 (α0)

  ∑ 

n=1

∞

 (− 1)n cos (πn arctan (x ⁄ y) ⁄ α0) 

× ∫ 
0

∞

ζ−1
 Jπn

α0

 (ζ √x2 + y2) Jπn

α0

 (ζ t ⁄ sin (α0)) (1 − exp (− ζ2
kFo)) dζ ,

where k = k2
 ⁄ k1; Bi0,2 = β0h. We did not introduce into the formulas of the wedge temperature new variables for the

arc radius of the bounded wedge b assigned to the layer thickness h and eigenvalues of the Sturm–Liouville problem
µm,n multiplied by h, i.e, they are determined from the transcendental equation

(πn ⁄ α0 + bBi0,2) Jπn

α0

 (µm,nb) − µm,nbJπn

α0

+1
 (µm,nb) = 0 .

Having satisfied the last three conditions of the problem, namely the kinematic contact condition from (6) and
the relations of heat conduction and nonideal thermal contact (7), we obtain a system of integral equations of the prob-
lem stated whose structure is determined by the kind of thermophysical contact conditions. In particular, at a nonideal
thermal contact we choose for the sought functions by varying x ≤ a(Fo), the contact pressure and temperature of
the contact segment T0,j(x, Fo) = Tj(x, 0, Fo)  determined in terms of the function fj(x, Fo) from the thermophysical
contact conditions (7):

f1 (x, Fo) = 
1

2
 χv∗ (Fo) p (x, Fo) + 




Bi0,1 − 

h∗
2




 T0,1 (x, Fo) + 

h∗
2

 T0,2 (x, Fo) ;

(18)

f2 (x, Fo) = 
1

2Λ
 χv∗ (Fo) p (x, Fo) + 

h∗
2Λ

 T0,1 (x, Fo) − 
h∗
2Λ

 T0,2 (x, Fo) ,
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where Λ = λ2
 ⁄ λ1; h∗ = h0hλ1

−1; χ = 
αEhfv0

2λ1(1 − ν)
. Substituting expressions (18) into the temperature formulas (14) and

(17), we get new integral representations for the temperature of the bodies

T1 (x, y, Fo) = 
χ
2π

 ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 v∗ (η) p (t, η) Φ1 (t − x, y, Fo − η) dt dη + 
1

π
 



Bi0,1 − 

h∗
2




 

× ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 T0,1 (t, η) Φ1 (t − x, y, Fo − η) dt dη + 
1

π
 
h∗
2

 ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

  T0,2 (t, η) Φ1 (t − x, y, Fo − η) dt dη ; (19)

T2 (x, y, Fo) = 
χ

2Λ
 ∂Fo ∫ 

0

Fo

     ∫ 
−a(η)

a(η)

 v∗ (η) p (t, η) Φ2 (x, t, y, Fo − η) dt dη 

+ 
h∗
2Λ

 ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 T0,1 (t, η) Φ2 (x, t, y, Fo − η) dt dη − 
h∗
2Λ

 ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

  T0,2 (t, η) Φ2 (x, t, y, Fo − η) dt dη , (20)

which, in the contact segment x ≤ a(Fo), y = 0, give two integral equations for determining the unknown T0,j(x, Fo).
Together with the relation

1
π

    ∫ 
−a(Fo)

a(Fo)

 p (t, Fo) ∆ (t − x) dt − 
χ

2π
 ∂Fo ∫ 

0

Fo

     ∫ 
−a(η)

a(η)

 v∗ (η) p (t, η) H (t − x, Fo − η) dt dη 

− 
1

π
 



Bi0,1 − 

h∗
2




 ∂Fo ∫ 

0

Fo

     ∫ 
−a(η)

a(η)

 T0,1 (t, η) H (t − x, Fo − η) dt dη 

− 
1

π
 
h∗
2

 ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 T0,2 (t, η) H (t − x, Fo − η) dt dη = δ∗ (Fo) − A∗a (Fo) x , (21)

where δ∗ = δE(2P0(1 − ν2))−1 and A∗ = ctan (α0)Eh(2P0(1 − ν2))−1, we arrive at a complete system of integral equa-
tions of the problem stated.

At an ideal thermal contact (h0 → ∞) we choose for the sought functions, by varying x ≤ a(Fo), f0,j(x, Fo)
and the temperature of the contact segment T1(x, 0, Fo) = T2(x, 0, Fo) = T(x, Fo) related to the contact pressure and
the functions fj by the following relations:

f1 (x, Fo) = f0,1 (x, Fo) + Bi0,1T (x, Fo) ,   f2 (x, Fo) = f0,2 (x, Fo) ,
(22)

f0,1 (x, Fo) + Λf0,2 (x, Fo) = χv∗ (Fo) p (x, Fo) .

In this case, the problem is reduced to the system of integral equations

T (x, Fo) = 
1
π

 ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 f0,1 (t, η) Φ1 (t − x, Fo − η) dt dη 
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+ 
1
π

 Bi0,1 ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 T (t, η) Φ1 (t − x, 0, Fo − η) dt dη , (23)

T (x, Fo) = ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 f0,2 (t, η) Φ2 (x, t, 0, Fo − η) dt dη , (24)

1
π

     ∫ 
−a(Fo)

a(Fo)

   (f0,1 (t, Fo) + Λf0,2 (t, Fo)) ∆ (t − x) dt − 
1
π

 χv∗ (Fo) 

× ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

  (f0,1 (t, η) +Bi0,1T (t, η)) H (t − x, Fo − η) dt dη = χv∗ (Fo) (δ∗ (Fo) − A∗a (Fo) x) . (25)

For the temperature of the bodies, we have the following integral representations:

T1 (x, y, Fo) = 
1
π

 ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 f0,1 (t, η) Φ1 (t − x, y, Fo − η) dt dη 

+ 
1
π

 Bi0,1 ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 T (t, η) Φ1 (t − x, y, Fo − η) dt dη ,

T2 (x, y, Fo) = ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 f0,2 (t, η) Φ2 (t, x, y, Fo − η) dt dη .

But if the surface y = 0 outside the contact area is heat-insulated (Bi0,1 = 0), then the problem is simplified: one has
to solve a system of only two integral equations for the functions f0,j(x, Fo):

1
π

 ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 f0,1 (t, η) Φ1 (t − x, 0, Fo − η) dt dη − ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 f0,2 (t, η) Φ2 (x, t, 0, Fo − η) dt dη = 0 , (26)

1
π

     ∫ 
−a(Fo)

a(Fo)

   (f0,1 (t, Fo) + Λf0,2 (t, Fo)) ∆ (t − x) dt 

− 
1
π

 χv∗ (Fo) ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 f0,1 (t, η) H (t − x, Fo − η) dt dη = χv∗ (Fo) (δ∗ (Fo) − A∗a (Fo) x) . (27)

Moreover, if at the initial instant of time v∗(0) = 0, then f0,j(x, 0) = T(x, 0) and we find the contact pressure from the
integral equation
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1
π

    ∫ 
−a(0)

a(0)

   p (t, 0) ∆ (t − x) dt = δ∗ (0) − A∗a (0) x .

The problem can be reduced to one integral equation in the case of heat insulation of the die and the layer
surface outside the contact area (Bi0,1 = 0). Then we get the equation for the relative contact pressure defining the
temperature and stressed–strained states of the tribosystem

1
π

     ∫ 
−a(Fo)

a(Fo)

   p (t, Fo) ∆ (t − x) dt − 
χ
π

 ∂Fo  ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 v∗ (η) p (t, η) H (t − x, Fo − η) dt dη = δ∗ (Fo) − A∗a (Fo) x .   (28)

For the layer temperature, we have the following integral representation:

T1 (x, y, Fo) = 
χ
π

 ∂Fo ∫ 
0

Fo

     ∫ 
−a(η)

a(η)

 v∗ (η) p (t, η) Φ1 (t − x, y, Fo − η) dt dη .
(29)

All the above formulas for the kernels of the integral equations hold provided that the corresponding Bi values in
them are assumed to be zero.

All systems of integral equations — (19)–(21), (23)–(25), (26)–(27) or (28) — are considered under the con-
dition of changing in x within the boundaries x ≤ a(Fo) and are closed by the balance condition

   ∫ 
−a(Fo)

a(Fo)

  p (x, Fo) dx = P∗ (Fo) . (30)

The unknown half-width of the contact segment a(Fo) is determined from the condition of boundedness of contact
stresses p(%a(Fo), Fo) = 0 used only in the case of pressing an unbounded or a high (b > a(Fo) ⁄ sin (α0)) wedge. Oth-
erwise a(Fo) = b sin (α0).

The scheme of solving the system of integral equations is known [8, 9]. But here some points should be
made more precise:

1. Asymptotic analysis of the kernels of integral equations permits stating that kernels H(x, Fo), Φ1(x, y, Fo),
and Φ2(x, t, y, Fo) at y ≠ 0, Fo > 0 will be regular, and kernels ∆(x), Φ1(x, 0, Fo), and Φ2(x, t, 0, Fo), when t → x,
Fo > 0, have a logarithmic singularity. Then, upon time discretization of the integral equations by the known scheme
[8, 9], which, as a consequence of the fulfillment of the conditions Φ1(x, y, 0) = 0, Φ2(x, t, y, 0) and H(x, 0) = 0 can
justifiably be used, the contact pressure and functions f0,j(x, Fo) at each instant of time Fo = Fok are given in the fol-
lowing form:

p (x, Fok) = 
2A∗
π

 ln 



 
1 + √1 − x2

x




 + 
ψ (x, Fok)

√1 − x2
 ,   f0,j (x, Fok) = 

2A∗
π

 ln 



 
1 + √1 − x2

x




 + 
ϕ0,j (x, Fok)

√1 − x2
 ,   (31)

where ψ(x, Fok) and ϕ0,j(x, Fok) are continuously differentiable and bounded functions for which the representation is
chosen in the form of an interpolation Lagrange polynomial of power n [14] by Chebyshev polynomials of the first
kind Tn(x) [10] of order n:

ψ (x, Fok) = 
1
n

  ∑ 

i=1

n

 ψ (xi, Fok) 



1 + 2  ∑ 

m=1

n−1

 Tm (xi) Tm (x)



 , (32)
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where xi = cos 




2i − 1
2n

 π



 (i = 1, ..., n) are zeros of the Chebyshev polynomial of the first kind of order n, and with

the logarithm in formulas (31) the asymptotic value of the contact pressure when x → 0 is given. The expression for

the functions ϕ0,j(x, Fok) is analogous. For the temperature of the bodies in the contact region, we choose the repre-

sentation in the form of a Lagrange interpolation polynomial of the form (32), since from the physical considerations
it is clear that with any relations between the thermophysical characteristics of the bodies it is a continuous and
bounded function.

2. Having given the value of the half-width of the contact segment a(Fok), we choose the value of the die
upsetting δ∗(Fok) so that the contact pressure satisfies the balance condition. In addition, the conditions ψ(%1, Fok) >
0 (at nonideal thermal contact) or ϕ0,1(%1, Fok) + Λϕ0,2 (%1, Fok > 0) (at ideal contact) must be fulfilled when it is
obvious that these conditions can only be met by pressing-in a short wedge with an insignificant pressing-in force
P∗(Fo). But if an unbounded or a high wedge is pressed in, these conditions will inevitably be violated. Choosing the
boundaries of the contact region, we attain fulfillment of the approximate conditions that are due to the numerical ap-
proach to the solution of the system: ψ(%1, Fok) < ε or ϕ0,1(%1, Fok) + Λϕ0,2(%1, Fok) < ε, where ε is some
number defining the computational error (as a rule, ε = 10−5). On the basis of the theorems from [7], the fulfillment
of the last two conditions is equivalent to the fact that

p (x, Fok) = 
2A∗
π

 ln 



 
1 + √1 − x2

x




 + ψ1 (x, Fok) √1 − x2  , (33)

where ψ(x, Fok) is a continuously differentiable and bounded function for which, as for (32), an interpolation Lagrange
polynomial of power n is constructed [14]:

ψ1 (x, Fok) = 
2

n + 1
  ∑ 

i=1

n

 ψ1 (xi, Fok) (1 − xi
2) 


1 + ∑ 

m=1

n−1

 Um (xi) Um (x)




(34)

by Chebyshev polynomials of the second kind Un(x) [10] of order n, xi = cos 


i
n + 1

 π

 (i = 1, ..., n) denotes zeros

of the Chebyshev polynomial of the second kind of order n. Then the final expression for the temperature of the bod-
ies in the contact region is also given in the form of a polynomial of form (34).

The use of formulas (33), as well as of the expressions for the functions f0,j and the temperature of the con-
tact segment in terms of interpolation Lagrange polynomials by Chebyshev polynomials, makes it possible to determine
the real distribution of the contact pressure and contact temperature at nonlinear values of δ∗(Fok) and a(Fok). For cal-
culations, it is enough to take a time-discretization step Fo1 = 0.05 and a power of the Lagrange interpolation polyno-
mials n = 21. Then the relative computational error does not exceed 5%.

3. The discontinuity of the slope of the tangent to the profile inside the contact space (the point x = 0) is
responsible for the existence of the logarithmic singularity of the contact pressure, and if a low wedge is pressed in,
then p(x, Fo) will also have a root singularity on the edge of the interaction region.

4. Due to the heat insulation of the side surface of the wedge outside the interaction area there is no station-
ary temperature distribution in the wedge-shaped region in this formulation of the problem for both the unbounded and
the bounded body. This conclusion follows from the analysis of the kernel of the integral representation of the wedge
temperature (17) and is confirmed by the further numerical calculations. As a consequence, even in the case of the ex-
istence of asymptotic (stationary) values of the functions of the pressing force P∗(Fo) and the velocity of displacement
v∗(Fo) in the tribosystem under consideration, the stationary distribution of the temperature fields and thermoelastic
stresses and displacements will not reach the steady state. The steady state can only be reached in a tribosystem con-
sisting of a heat-conducting layer and a heat-insulated die for which the integral equation (28) has been constructed.
Evidently, in this tribosystem the existence of the steady state is possible only in the case where asymptotic (station-
ary) values of the functions P∗(Fo) and v∗(Fo) will exist.
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Analysis of the Results. As was shown in [3], the contact pressure distribution in the stationary problem and,
as a consequence, mechanical and thermophysical characteristics of the tribosystem, such as thermoelastic displace-
ments, stresses, and temperature, depend on the value of the parameter χ defining the heat-release intensity. The fol-
lowing effects of the behavior of the considered tribosystem take place:

(1) an increase in χ causes a decrease in the upsetting and in the value of the contact segment (Fig. 2), which
is a consequence of the surface bulging y = 0;

(2) balance of the die is possible at negative values of δ∗ when the increment of the pressing force intensity
P0 additionally warps the contact surface;

(3) at fixed χ an increase in the pressing-force intensity P0 increases δ∗ and the value of the contact-seg-
ment half-width a.

Prevalence of any one of the types of external action — purely mechanical or thermal — is not characteristic
of this tribosystem, which shows up as the absence of critical values of the contact segment half-width [8] at which a
change in the pressing force does not influence the size of the interaction space. Numerical calculations of the station-
ary thermoelastic problem show the simultaneous action of the thermomechanical factors:

1. As the apex angle α0 of the die increases, there is an increase in the contact-segment half-width in the
thermoelastic problem as well.

2. Unlike the pure elastic problem, where an increase in the pressing force causes an increase in the upsetting,
in the thermoelastic problem a larger contact space enhances the heat generation and causes a warpage of the layer
surface such that the negative value of δ∗ increases.

These conclusions are illustrated in Fig. 3, where at α0 = π ⁄ 3 δ∗ C −0.1305, at α0 = π ⁄ 4 δ∗ C −0.09, and in
the third case δ∗ C −0.027 (α0 = π ⁄ 6).

Analysis of the contact pressure distribution at a nonstationary heat release caused by the pressing force P∗(Fo)
and the velocity of motion v∗(Fo) varying according to the laws (1) P∗(Fo) = 1 − exp (−Fo), v∗(Fo) = 1 (Fig. 4a) and
(2) P∗(Fo) = 1, v∗(Fo) = 1 − exp (−Fo) (Fig. 4b) shows that with the first law of change with time in the load and

Fig. 3. Contact pressure distributions of the thermoelastic stationary problem at
various values of the apex angle of the wedge (χ = 1.0, α0 = π ⁄ 3 (1), π ⁄ 4
(2), and π ⁄ 6 (3)).

Fig. 2. Distribution of the contact pressure (a) and normal displacements of the
contact surface of the layer uy(x, 0) (b) of the stationary problem for a heat-in-
sulated die (v = 0.3, Bi0,1 = 0, Bi1,1 = 2.0, α0 = π ⁄ 4, (Eh) ⁄ (2P0(1 − ν2)) =
0.25, χ = 0.5 (1), 1.0 (2), and 1.5 (3)). The dashed curve corresponds to the
contact pressure of the force problem (χ = 0).
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velocity of motion elastic deformations prevail and with the second law thermal deformations prevail. The duration of
the transient process for the contact pressure is longer (about 6Fo) than the time of attaining a stationary value of the
pressing load or the velocity (4.5Fo).

Conclusions. Note that in the case of pressing-in a short wedge, the existence of a solution with a root pe-
culiarity of contact stresses on the edge of the contact region is possible. However, an increase in the heat-generation
intensity causes a bulge in the contact surface of the layer, which leads to a decrease in the contact segment and a
regularization of the contact stresses (they vanish at the ends of the contact region), i.e., the die on the edge of the
contact space begins to separate from the layer surface. However, in both the elastic and the thermoelastic problem the
contact pressure preserves the logarithmic singularity at the discontinuity point of the tangent x = 0 to the die surface.

NOTATION

A∗, dimensionless parameter of the wedge geometry; a(Fo), dimensionless half-width of the interaction area;
a(τ), time-dependent half-width of the contact area, m; Bi0,1, Bi0,2, Bi1,1, Biot criteria; b, radius of the circular arc of
the wedge, m; E, Young modulus, N ⁄ m2; erfc (x), error function; exp (x), exponential function; Fo, Fourier criterion;
Fok, discrete value of time in the numerical solution of the integral equation; F(x, y, τ), thermoelastic potential of dis-
placements, m2; fj(x, τ), function of the combination of the temperature and thermal flow on the contact surface,
K ⁄ m; f0,j(x, Fo), dimensionless function of the combination of the temperature and thermal flow on the contact sur-
face; f, friction coefficient; H(x, Fo), kernel of the integral equation; h, layer thickness, m; h0, heat conductivity on the
contact surface, W ⁄ (m2⋅K); h∗, dimensionless heat conductivity of the contact surface; Jn(x), Bessel function of the
first kind of order n; K1(ϕ, n), kernel of the finite integral Fourier transform; K2(ρ, µm,n), kernel of the finite integral
Hankel transform; k, ratio of the thermal diffusivities of the bodies; kj, thermal diffusivity, m2 ⁄ sec; P(τ), pressing
force, N; P0, intensity of the pressing force, N; P∗(Fo), dimensionless function of the pressing force; p(x, τ), contact
pressure, N ⁄ m2; p(x, Fo), dimensionless function of the contact pressure; pst, dimensionless function of the contact
pressure of the stationary problem; S(x), Heaviside function; t, integration variable; Tj, temperature, K; T0,j(x, Fo), T(x,
Fo), dimensionless functions of the contact segment temperature; Tn(x), Chebyshev polynomial of the first kind of
order n; Un(x), Chebyshev polynomial of the second kind of order n; ux, uy, components of the displacement vector,
m; uy

st, dimensionless function of normal displacements of the contact surface of the layer of the stationary problem;
v(τ), velocity of motion, m ⁄ sec2; v0, scale of change in the velocity, m ⁄ sec2; v∗(Fo), dimensionless velocity function;
x, y, z, Cartesian coordinates, m; xi, zeros of Chebyshev polynomials; α, linear thermal expansion coefficient, K−1;
α0, half-opening of the die, rad; β0, γ0, γ1, coefficients of heat exchange between the corresponding planes of the in-
teracting bodies and the environment, m−1; ∆(x), kernel of the integral equation for determining the contact pressure;
δ(τ), upsetting of the die, m; δ∗(Fo), dimensionless function of the die upsetting; ε, computational error; ζ, η, integra-
tion variables; Λ, ratio of heat conductivities of the bodies; λj, heat-conductivity coefficient, W ⁄ (m⋅K); µ, nonnegative
roots of the transcendental equations of the Sturm–Liouville problem; ν, Poisson coefficient; ξ, parameter of the inte-
gral Fourier transform; ρ, ϕ, polar coordinates, m, rad; σx, σy, τyx, τyz, components of the stress tensor, N ⁄ m2; τ, time,

Fig. 4. Contact pressure distributions under nonstationary heat generation
caused by the pressing force P∗(Fo) and the velocity of motion v∗(Fo) for
some values of the dimensionless time of Fo [1) 0.5, 2) 1.0, 3) 2.0, and 4) 4.0)
when χ = 1.0. The dashed curve corresponds to the pressure in the stationary
problem.
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sec; Φj, kernel of the integral representation of the temperature; χ, parameter defining the heat-generation intensity; ψ(x,
Fok), ψ1(x, Fok), ϕ0,j(x, Fok), Lagrange interpolation polynomials. Subscripts: i, j, indices of summing and defining the
temperature of the corresponding body; k, summing index and discrete value of Fo; m, n, summing indices and indices
for selecting eigenvalues of the Sturm–Liouville problem; st, stationary solution of the problem; x, y, z, components of
the vector of displacements and the tensor of stresses in the direction of the corresponding Cartesian coordinates; 0,
dimensional parameters of the problem and particular representations of the problem solution functions; 1, particular
representations of the problem solution functions; *, dimensionless parameters of the problem.
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